数学是我们学习的主要科目之一,在日常生活中,我们也需要应用数学。学习数学台上、下底面的周长分别为c,c,斜高为h,S=1/2*(c+c)*h S圆柱侧=c*l S圆台侧=1/2*(c+c)*l=兀*(r+r)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d
进入高中以后,学生的学习压力就会越来越大,高中三年就是为了高考而做准备。高中的数学知识相对来说会越来越难,同学们要想提高高中数学的学习效率,一定要掌握学习的方法。除了课堂上学习的知识,还要增加大量的练习。下面是沪江小编给大家整理的关于函数的知识点和应用,大家可以相互学习一下。 1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。 2、用函数解应用题的基本步骤是: (1)阅读并且理解题意. (关键是数据、字母的实际意义); (2)设量建模; (3)求解函数模型; (4)简要回答实际问题。 常见考法: 本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。 误区提醒: 1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。 2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。 【典型例题】 例1: (1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利). (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1 000元,每期利率2.25%,试计算5期后的本利和是多少? 解: (1)利息=本金×月利率×月数. y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元. 例2: 某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。 (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)。 数学作为理科知识,是我们学习的重中之重。要想学好数学,课堂上一定要认真听课做笔记,对于重点难点要着重练习。课后的练习要学生的学习压力就会越来越大,高中三年就是为了高考而做准备。高中的数学到位,多做题才能巩固学过的知识,丰富自己的解题经验对以后的高考能起到很大帮助。以上就是小编整理的知识点,希望可以帮助大家。
也是培养自己自学能力的一种重要方式。 好的辅导书可以帮助我们学好大学数学,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高自己解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。(这里,每位学生应认真阅读我们特学数学有很多分支,其中理工科生普遍学习的就有一下几种,分别是高等数学、线性代数意为学生编写的数学教学辅导书。辅导书指出了各章节要点,对内容作了小结,并附了大量典型题。完成这本书上的课外自测题,对理解和掌握大学数学各章重点内容有非常好的效果。) 以上八点建议是我个人通过大学数学的学习总结而来的,也不一定十分有用,但是大家可以借鉴参考一下。
答题,过程分比最后的答案要重要得多,不要会做而不得分。 七、重视掌握应试规律——提高考试成绩效率 有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的最大区别不是智力,而是应试中的心理状态。也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最重视的记忆力却排在第数学的学生来说,要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学17位。事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤。 上述是沪江小编为大家总结的关于中考数学复习时需要注意的七个问题的相关内容,希望这些能够帮助大家提升数学复习的效果,在中考中取得理想的成绩。
就是没有熟练的典型特征 第四,考试复习的时候,一定要听老师在考试前一节课给你们讲的题,或者老师划的重点。大学的考试,老师说什么,考试几乎就考什么的。 第五,平时分混好一点,作业每次都要交,课每次都去上,课后多问问题,老师对你有印象,平时分就高。 第六,自信自己学到的知识点是掌握好的,很多学生就是焦虑才考差,大学考试,题目的答案经常是很怪的,不要质疑,重算一次答案还是怪,就让它怪吧,往往答案就是怪的。 学习的方法有很多,想学都非常的自由,不过即使再自由也要面对考试,对于很多人来说,最难的应该就是大学数学,那么如何才能够在大学学好数学要在大学学好数学也不是很难,掌握上面的几点,并应用在实际的学习过程中,学习顺利通过考试还是一件非常简单的事情,一个学期也即将结束,好好加油吧,沪江的小编相信大家都能够在考试中取得一个好成绩,可以过一个好年。
有加、减法或者只有乘、除法,都要从左往右按顺序计算。 3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。括号里面的计算顺序遵循以上1、2、3条的计算顺序。 知识点二:0的运算 1、0不学的计算是小学数学学习的重中之重,这一时期的计算能力关系到考试也关系到未来数学能做除数;字母表示:无,a÷0是错误的表达 2、一个数加上0还得原数;字母表示:a+0 = a 3、一个数减去0还得原数;字母表示:a-0 = a 4、一个数减去它本身,差是0;字母表示:a-a =0 5、一个数和0相乘,仍得0;字母表示:a×0 =0 6、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0) 知识点三:运算定律 1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。字母表示: a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。字母表示: (a+b)+c=a+(b+c) 3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示: a×b=b×a 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示: (a×b)×c=a×(b×c) 5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示: ①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c; ②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c) 6、连减定律: ①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示: a—b—c=a—(b+c);a—(b+c)=a—b—c; ②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示: a—b—c=a—c—b;a—b+c=a+c—b 7、连除定律: ①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示: a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c; ②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示: a÷b÷c=a÷c÷b;a÷b×c=a×c÷b 知识点四:简便计算例题 一、常见乘法计算: 1、整数:25×4=100 125×8=1000 2、小数:0.25×4=1 0.125×8=1 二、加法交换律简算例题: 50+98+50 =50+50+98 =100+98 =198 三、加法结合律简算例题: 488+40+60 =488+(40+60) =488+100 =588 四、乘法交换律简算例题: 0.25×56×4 =0.25×4×56 =1×56 =56 五、乘法结合律简算例题: 99×0.125×8 =99×(0.125×8) =99×1 =99 六、含有加法交换律与结合律的简算例题: 65+28.6+35+71.4 =(65+35)+(28.6+71.4) =100+100 =200 七、含有乘法交换律与结合律的简算例题: 25×0.125×4×8 =(25×4)×(0.125×8) =100×1 =100 八、乘法分配律简算例题: 1、分解式 25×(40+4) =25×40+25×4 =1000+100 =1100 2、合并式 135×12.3—135×2.3 =135×(12.3—2.3) =135×10 =1350 3、特殊例题1 99×25.6+25.6 =99×25.6+25.6×1 =25.6×(99+1) =25.6×100 =2560 4、特殊例题2 45×102 =45×(100+2) =45×100+45×2 =4500+90 =4590 5、特殊例题3 99×26 =(100—1)×26 =100×26—1×26 =2600—26 =2574 6、特殊例题4 5.3×8+35.3×6—4×35.3 =35.3×(8+6—4) =35.3×10 =353 九、连减简便运算例子: ①528—6.5—3.5 =528—(6.5+3.5) =528—10 =518 ②528—89—128 =528—128—89 =400—89 =311 ③52.8—(40+12.8) =52.8—12.8—150 =40—40 =0 十、连除简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32 十一、其它简便运算例子: ①256—58+44 =256+44—58 =300—58 =242 ②250÷8×4 =250×4÷8 =1000÷8 =125 在学习了加、减、乘、除这些基本运算后,四年级下学期,同学们会开始接触到四则运算。四则混合运算看起来很简单,可大家往往容易在运算顺序上犯错,因此成了出错率最高的题型之一。所以看了上面的内容,大家是不是对四则混合运算有了更深的了解呢?
数学黑洞,大家就显得有点孤陋寡闻了,数学
数学
是以省级为单位制定报考政策,而以市级为单位组织考试,并且考试时均需在报名所在地参加。根据《关于会计专业技术初级资格考试报名地点有关事项的通知》的要求可以了解到,如果涉及到跨市的情况,考生报名时按照就近方便原则选择报考地点即可。 Q3:报名需要户口本吗? A3:大部分地区对户口是没有限制的,报名2018年初级会计职称考试,只需满足以下条件即可: (1)坚持原则,具备良好的职业道德品质; (2)认真执行《中华人民共和国会计法》和国家统一的会计制度,以及有关财经法律、法规、规章制度,无严重违反财经纪律的行为; (3)履行岗位职责,热爱本职工作; (4)具备国家教育部门认可的高中毕业以上学历。 不过18年上海增加了一条:具有本市户籍(或在本市普通高等院校在读学习),或持有上海市居住证(在有效期内,不含上海市临时居住证)的要求。 北京市18年也规定了:非京籍考生应出具北京市居住证【或在京大专院校的学生证(有效期内)、或军官证、士官证(北京地区现役军人)】的要求。 这类特殊地区还需要按照当地情况准备材料。 Q4:会计证迁移的地方和户籍所在地不一样,在哪里报考? A4:初级会计考试报名没有了会计证的限制后,已经不作为限制考生报考的因素,所以考生在报名时根据自身情况,按照就近方便原则选择报考地点。 Q5:一定需要照片吗? A5:因为报名时使用的照片,将