没看; 5. 如果E看了,那么A和D也看了。 这个晚上哪几个人看了电视? A.AB B.DC C.ABCD D.DC或AB 第五题:同花顺 5.从52张纸牌中抽出7张同花的牌,那么最多需要抽多少张牌呢? A. 28 B. 25 C.26 D.以上答案都不对 第数学是一门很有趣也很实用的学科,教育学家也常常用数学问题来考察和选拔人才,同时数学六题:赌比赛 6. 四个代表队甲,乙,丙和丁进行比赛,观众A,B和C对比赛的胜负问题进行猜测。 A:"甲只能取得第三,丙是冠军"; B:"丙只能取得第二,乙是第三", C:"丁取得第二,甲是第一"。 比赛结束,对真正的名次,他们都只猜对了一半,请推出比赛的名次。 A. 甲取得第三,乙取得第一,丙取得第二,丁取得第四 B. 甲取得第三,乙取得第三,丙取得第二,丁取得第二 C. 甲取得第四,乙取得第三,丙取得冠军,丁取得第二 D. 以上答案都不对 答案: 1.红豆和绿豆 答案选A 解释: 从标有“红绿豆”的盒子中随便取一颗豆子,假如取出来的是一颗红豆,则“红绿豆”的盒子里面都是红豆(这一步相信大家都能想到吧),然后剩下的盒子中,标有“红豆”的盒子里面必须是绿豆(原因:如果标有“红豆”的盒子里面是红绿豆的话,那么标有“绿豆”的盒子里就只能是绿豆了,这与题意不符),而标有“绿豆”的盒子里面是红绿豆。 2.天平问题 答案选B 解释:这里以★代替所称物品的质量,用“ ▽ ”表示天平,则称量时如下图所示: ★=1 ★ ▽ 1 ★=2 ★+1 ▽ 3 ★=3 ★ ▽ 3 ★=4 ★ ▽ 1+3 ★=5 ★+1+3 ▽ 9 ★=6 ★+3 ▽ 9 ★=7 ★+3 ▽ 1+9 ★=8 ★+1 ▽ 9 ★=9 ★ ▽ 9 ★=10 ★+3 ▽ 1+9 …… ★=40 ★ ▽ 1+3+9+27 3. 农场分马 答案选C 解释: 2,3,9的最小公倍数是18,然而农场主却只有17匹马,所以三个儿子可以这样做:先从邻居家借1匹马,这样凑够18批马后,大儿子得18/2匹,即为9匹马;二儿子得18/3匹,即6匹马;三儿子得18/9匹马,即2匹马,又因为9+6+2=17,最后剩下的一匹马再还给邻居就可以了。 4.买彩电 答案选B 解释: 关键要找到逻辑分析的突破口,这里面第5句话为解题的突破口: 第一步:由5开始假设:若E看了,则A、D也看了,然后根据1可推出B看了,根据4、3课推出B没看,所以假设不成立,E没有看电视 第二步:根据2所说的内容和E没看电视的结论,可推出D一定看了,在根据4所说,C也看了。 第三步:根据3的内容,若C看了,则B一定没看,A也没有看, 答案应该选:CD 5.同花顺 答案选B 解释: 这个很简单啦,因为52张(大小鬼被抽出了)扑克牌中只有四种花色,假设我们最不幸运时,在我们抽了24张牌仍没有出现7张牌同一种花色,这时候这24张牌中每种花色必然都是6张,所以在第25张牌时,我们无论抽到那种花色,都能凑齐7张同一种花色的牌。 6.赌比赛 答案选C 解释:需进行假设论证,因为每个人只说对了一半,所以可以根据A说的话进行假设论证: 假设:甲取得第三,丙不是冠军 ∴ 在C说的话中,丁取得第二为真,甲取得第一为伪 ∴“丁为第二,甲为第三”与B说的“丙只能取得第二,乙是第三”都矛盾 ∴ 假设不成立 ∴ 甲没有取得第三,丙为冠军 以上这几道题其实是流传在网络上很久的很老的几道题了,但是拿出来依然经典!主要考验的是孩子的数学逻辑能力。其实也很有难度与挑战。
生了自主探索的欲望。我让学生分小组展开讨论,相互质疑,寻求解决问题的办法。这样由学生通过讨论交流获得的知识,比被动听讲获得的知识掌握得更深刻、更牢固。 最后在自主探索中要尊重学生的个性,给学生以更多的选择空间。在教学活动中,学生学习的过程是要把书本知识转化为个体认识。在这个过程中,每个学生都会有自己不同的想法和做法,教师要尊重学生的个性,给学生已更多的选择空间。例如:在学习“探索三角形全等的条件”这部分内容时,由于在上节课已认识了全等三角形,学生知道了用“sss”判定两个三角形全等的方法,因此学习新课前,我先提问:“你们是否能够通过动手操作,探索得出判定两个三角形全等的其他方法?”先让学生去猜想,而不直接指出可行性。 然后要求学生分组讨论验证自己的猜想。结果学生通过动手操作,自主探索,完数学的内容主要是由数字、符号、公式和公理定理组成,一般说来,它显得较为枯燥无味。许多学成了两课时要求完成的任务,而且达到了较好的效果。这样始终把学生放在主体地位,充分调动
题上出现,如果你能多 掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。 第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。 第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需学生而言,高等数学无疑是他们最为头痛的一门学科,很多人在大一时便在高等数学要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。 总的来说,想要学好高等数学不仅仅需要上课认真听讲,还需要我们在课后多做题进行反复练习,只有题做得多了,我们对于提醒的敏感程度才会上升,我们的考试成绩才能有所提高。希望本文对大家高数的学习能够有所帮助。
题上出现,如果你能多 掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。 第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。 第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需学生而言,高等数学无疑是他们最为头痛的一门学科,很多人在大一时便在高等数学要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。 总的来说,想要学好高等数学不仅仅需要上课认真听讲,还需要我们在课后多做题进行反复练习,只有题做得多了,我们对于提醒的敏感程度才会上升,我们的考试成绩才能有所提高。希望本文对大家高数的学习能够有所帮助。
它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1在角的平分线上的点到这个角的两边的距离相等 28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所数学是我们学习的主要科目之一,作为理科之首的数学是我们学习的重中之重。学习数学有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等 通过学习数学,我们可以发现数学知识和我们的生活息息相关。要想提高数学的数学效率,除了认真听课以外。一定要多做练习,通过做题来巩固学过的知识,丰富自己的做题经验,这样才能真正掌握。以上就是初二几何知识点,希望可以帮助大家。
美的演出。 (4)、考试时,容易紧张的同学,有两个可能的原因: a.准备不够充分,以致缺乏信心。这种人要加强试前的准备。 b.对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,不要预期太高。 5.侦错、补强 : 测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。 6.回想: 一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最学生来说,学好数学既是一件必要的事情,同时也是一件重要的事情。而数学的学习是讲究方法和技巧的。实际上,学好数学重要的。将主题重点回想一遍,才能完整了解我们在学些什麼东西。 任何的成功都没有捷径,我们只有在平时的生活学习中一点点的积累进步,最后才会有出众的结果。所以,沪江小编提醒广大家长,让自己家的孩子从今天做起从预习开始吧!
工作日”化归为“总工作量”。 例18:超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克? 需学阶段的学生来说,掌握系统的数学学习技巧至关重要。那么在平时的学习中,学要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。 上述就是沪江小编与大家分享的关于小学数学解题技巧的内容,希望大家能够深入掌握这些技巧,提升自己数学学习的能力和效果,取得理想的学习成绩。