使得他们逃脱,按照这样一个原理现象,人们对密码的设值破解有了全新的思路。小编这里给大家简单介绍比较有名的两个数学黑洞,感兴趣的同学可以仔细读读。 数学被誉为“科学之母”,在现代科技的发展中起着定海神针般的作用,而现代的战争更是被认为将是一场“数学家和信息学家的战争”.在信息战中,要运用数学作大量的模拟运算,运用数学在空间作精确的定位,运用数学对导弹作精密制导,运用数学来研究保密通信的算法,运用数学作为网络攻击利器. 【一】123黑洞 数学中的123就跟英语中的ABC一样平凡和简单.然而,按以下运算顺序,就可以观察到这个最简单的 黑洞值:①数:设定一个任意的数,例如:1234567890, ②偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个. ③奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个. ④总:数出该数数字的总个数,本例中为 10 个. ⑤新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510. ⑥重复:将新数5510按②、③、④的算法重复运算,可得到新数:134. ⑦重复:将新数134按②、③、④的算法重复运算,可得到新数:123. 结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都学中经常出现,在数学领域中也存在黑洞,对于数学会是123.换言之,任何数的最终结果都无法逃逸123黑洞. 【二】6174黑洞 比123黑洞更为引人关注的是6174黑洞值,它的算法如下: ①数:设定一个4位数字不全相同的4位数,例如1234(也可取重复数字,如2244等,只要4个数字不全相同就行); ②大数:取这4个数字能构成的最大数,本例为:4321; ③小数:取这4个数字能构成的最小数,本例为:1234; ④差:求出大数与小数之差,本例为:4321-1234=3087; ⑤重复:对新数3087按②、③、④的算法求得新数为:8730-0378=8352; ⑥重复:对新数8352按②、③、④的算法求得新数为:8532-2358=6174; ⑦结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞; 比起123黑洞来,6174黑洞对首个设定的数值有所限制,但是,从实战的意义上来考虑,6174黑洞在信息战中的运用更具有应用意义。
就是跳步解答。 也许,初三学生后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。 2.避免审题丢分 中考数学考试中存在很多由于审题不仔细(多看条件、少看条件、看错条件)丢分案例。为什么会这样呢?因为初三学生平时做题太多,遇到类似题,审题就会思维定势,先入为主,主观臆断,不假思索认为是以前做过的题。 如在抛物线对称轴上找点很可能看成在抛物线上找点或者在y轴上找点;运动方向大部分题是由下往上,从左往右,习惯性以为都这样已知的;点在直线或线段上学生来说,在解答中考数学等等。一旦审错题浪费时间更多,所以审题不要着急,一个字一个字读,耐得住这份心,才能审好题。 3.中考数学要学会检查 检查突出重点“确保得分”,中考数学卷子做完之后,初三学生有时间的话,要全面检查。如果时间不是很充裕,则要重点检查选择题、填空题、计算类的题目。 因为这类中考数学题目稍有错误,可能一分不得,而证明题只要能证出来,一般不会出错或太大的错,得分相对有保证。当然,不是说这部分题不用检查,有时间的话,还是需要认真检查的。 上述是沪江小编围绕中考数学高分答题技巧为大家提供的一些建议,希望这些方法能够切实帮助大家提升数学题目解答的效率与效果,取得理想的考生成绩。
工作量/工作时间 工作时间=总工作量/工作效率 7.赛事,票价问题 单循环赛:n(n-1)/2 淘汰赛:n个球队,比赛场数为n-1场次 很多学生在初中阶段,数学学习就感到明显吃力了。这是由很多原因造成的,我们不能单纯责怪孩子不努力。也许是学习方法,也数学常见题型了,初中数学虽然没有高中那么复杂,但是知识点还是比较琐碎。很多人学起来得心应手是因为对该阶段的数学许是逻辑思维能力,也许是领悟问题。总之,如果遇到这样的情况,大家可以来沪江网系统的学习中学的数学知识。
今天沪江小编和大家聊一聊高二数学公式,小编知道很多同学无法突破数学这一关,平时花了很多精力在数学上,可是成绩就是提高不了,为了解决大家的烦恼,沪江小编特数学公式,小编知道很多同学无法突破数学这一关,平时花了很多精力在数学意为大家整理了高二数学公式,希望大家能掌握这些公式,并灵活的运用,有需要的小伙伴一起来看看吧! 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac
具有一般性的简便计算规律。 在新课时教学中,学生在知识和技能的掌握上可能出现漏洞和缺口,在总复习的时候最大的任务就是查漏补缺,可以避免在知识的认知结构中形成更大的漏洞和缺口,而出现“一步掉队,步步掉队。要数学总复习阶段以后,供大家利用的复习时间越来越少,这就要求大家在有限的实践内尽可能地复习更多的知识。那么初中数学做好知识的漏洞和缺口,因此,在复习的时候要注意学生的“共性”和“个性”问题,对学生中出现的这些问题进行及时的评价和分析,并相应调节复习的进程,采取不同的补救措施,搞好漏洞和缺口的工作。 上述是沪江小编为大家分享的调节数学总复习进程的有效方法内容,希望这些能够帮助大家切实提升数学学习的效率和效果,让大家取得理想的考试成绩。
答题,过程分比最后的答案要重要得多,不要会做而不得分。 七、重视掌握应试规律——提高考试成绩效率 有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的最大区别不是智力,而是应试中的心理状态。也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。我们要在教师的指导下做一定数重视的记忆力却排在第17位。事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤。 上述是沪江小编为广大中考学生提供的关于中考数学复习需要重视的七大问题,希望这些问题能够引起同学们的足够重视,帮助大家取得理想的考试成绩。
何在课堂上学好数学知识。 首先,在课堂教学中培养好的听课习惯是很重要的。听当然是主要的,听能使注意力集中,注意积极思考、分析问题,要把老师讲的关键性部分听懂、听会。提高数学能力,锻炼自己的思维,主要也是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。 其次,听的时候不能光听,为了往后复习,应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提45钟课堂效果。 再次,如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏(有目的进行限时训练),这样久而久之,思维的敏捷性和数学能力会逐步提高。 最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不学生来说,如何在课堂上有限的时间内掌握更多的数学能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。 上述是沪江小编为大家总结的关于如何在课堂上学好数学的相关技巧和方法,希望这些内容能够帮助大家提升数学学习的效果,取得理想的考试成绩。
破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊! 8、趣味数学小故事:一个故事引发的数学家 陈景润是家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院。一天,沈元老师在数学课上给大家讲了一个故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。 现在的小学生学习成绩都非常的好,知识面也比较广,这不仅和不断发展的社会有关系,也和先进的教育方式有关系。这些先进的教育方式不仅让孩子们爱上学习,也很少有偏科的情况。这都和从小的教育有关系,以上是沪江的小编为大家整理的几个趣味数学小故事,希望孩子们的数学兴趣从这里开始。