语言表达再一次理清思路。学生用画图表示出自己的想法,用名字、用字母、用数字图示表达,感受到用符号比文字更简洁,在学习数学中更喜欢运用符号、画图去表达题意。画图把课堂交给学生,学生在表达中使知识得以升华。 四、画图培养学生良好的思考习惯 斯蒂恩说:“如果一个特定的问题可以转学生来说,数学是最难学的一个科目,但是想要学好数学,方法也不是没有。画图是数学化为一个图像,那么就整体把握了问题。”学生画过图,在理解的基础上去思考,才真正掌握了解题方法。 以上就是沪江小编为大家整理的小学数学解决问题的法宝--画图。希望能够对大家的小学数学学习有所帮助。培养学生独立思考的能力,是学好数学的关键。画图的过程是学生思考的过程,把题目的意思准确地转化成简洁的图形,通过分析图去解决问题,有助于学生养成认真审题、独立分析、思考,善于钻研的精神。教师在教学中适时引导、渗透,学生在经历、体验、探索的过程中形成数学活动经验,有效运用画图策略,培养学生的几何直观能力,形成良好的思维习惯,发展学生的数学思维。
学数学计算能力 在小学数学教学中,计算作为重要的教学内容之一,贯穿整个小学数学的主线,是学生学看清题中的数字和运算符号,想想什么地方可用口算,什么地方要用笔算,是否可以用简便运算等;然后再动笔计算;最后 认真检查。 (2)培养认真计算的习惯。在四则运算中,碰到数字大、步骤多的计算题时,要做到冷静思考、耐心计算。能口算的则口算,不能口算的应注意认真计算。计算时,要求书写整洁,格式规范,方法合理。同时,采取一定的措施,强化学生规范打草稿的习惯,以保证计算的准确及检查时的方便明了。 (3)培养自觉检验的习惯。检验要做到耐心细致,逐步检查。一查题目中数字是否抄错;二查计算过程和计算结果是否有误,发现错误要及时纠正。如:学生在解好方程后,一定要把答案代入原方程进行必要的验算,通过验算,让学生做出正确判断;当然,竖式计算学生也能通过交换律及逆运算的关系来进行验算
初中的数学难度逐渐提升,很多同学都是从这时候在数学上落数学难度逐渐提升,很多同学都是从这时候在数学上落到来后面。所以想要学好初中的数学,基础知识与举一反三的能力一定要培养。初中的数学公式是学习数学知识的基础,所以要牢记这些数学公式,做题的时候灵活运用进去。 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r>0 扇形公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 运用好这些数学公式,在我们平时做题是才能更好的代入。如果记不住数学公式,那么谈何解题。初中阶段的数学要有意识的培养自己的逻辑分析能力与思考能力,在熟记数学公式的基础上获得知识。
方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (2)分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (3)公式法 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 四、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 五、一元一次方程根的情况 利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况: I当△>0时,一元二次方程有2个不相等的实数根; II当△=0时,一元二次方程有2个相同的实数根; III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根) 要想学好数学,首先要端正自己的学习态度,养成良好的学习习惯。平时做到多思考,多学的数学成绩出现下滑现象。初中的数学做题,多提问的习惯。课堂上一定要认真听课做笔记,遇到不懂的地方要及时寻求老师的帮助。课后的练习要多做,丰富自己的做题经验有利于应对考试。以上就是小编整理的知识点,希望可以帮助大家。
,立刻办理了住宿手续。一桩大生意做成了,虽然复杂了点,但刘建明先生心里还是十分高兴的。 趣味数学故事(9): 大约1500年前,欧洲的数学家们是不明白用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照必须规则,把它们组合起来表示不一样的数目。在这种数字的运用里,不需要“0”这个数字。 而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他十分高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时光,这件事被当时的罗马教皇明白了。 当时是欧洲的中世纪,教会的势力十分大,罗马教皇的权利更是远远超过皇帝。教皇十分
换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。 教学目的与方式: 由于数学物理方法课程既是物理类专业的重要基础课又是一门工具课。故本课程的教学目的,一方面是让学生通过本课程的学习,掌握本课程所涉的数学方法、技巧去解决物理学中的一些问题,如,用留数理论计算物理学中的反常积分,用分离变量法求解物理学中三类典型数理方程的有界问题,用积分变数学换法求解物理学中三类典型数理方程的无界问题等等;另一方面是让学生通过本课程的学习,其逻辑思维能力得到训练、分析问题解决问题的能力得到提高,而对所学物理学知识加深理解、融会贯通。 数学物理方法是一门纯理论课程。在教学中我们采取课堂讲授(为主)、课下做练习、上机实践相结合的方式,并注重在习题课上开展课堂讨论这一环节。对教学内容我们是按照由浅入深,由具体到抽象,由特殊到一般的原则来组织,使学生能循序渐进地逐章掌握该课程内容。 鉴于数理方法其中的不少定解问题,不仅难于求解,而且其解的物理意义也难于理解。因此,我们认为引入CAI教学很有必要。特别是使用一些功能性很强的软件(如,Matlab,Mathematica),便可使有些教学内容在计算机上实现可视化,有些内容则可通过人机对话加深理解,目前我们已开展了这方面工作。这亦是学生上机实践的一部分内容。 以上便是沪江小编为大家为介绍的数学物理方法课程的具体情况,希望对大家能有所帮助。获取更多相关知识请关注沪江网校。
成对典型习题进行题后总结反思的习惯对提高解题能力触发解题潜能是极为有利的。例如: 自己是否很好地理解透题意,找到条件与问之间的联系? 能否迅速发现题目中关键的解题题眼? 能否变换添置题目中条件、问题、结论? 这道题所用的方法技巧有哪些特殊之处? 能否推广这道题的解题方法技巧? 自己能从这道题中收获哪些新知识新方法? 还有哪些与此相关联相类似的题目呢? 这道题的背景设置技巧、构思方法编排、分析流程等有无代表性? 认真反思总结一道有代表性习题所得丰厚收获,岂是泛泛做几十道习题所能与之相比!前者在考场上数学答卷题感丰厚左右逢源一触即发,后者数学应考题感数学作为小升初考试中的重要科目之一,是对学生数学学习知识和能力的重点考察。而小升初数学的复习除了要掌握相应的知识以外,还要知道如何学思路枯竭无源搜肠刮肚望题兴叹。 上述就是沪江小编为广大小学生提供的关于小升初上学不复习的一些建议,希望这些内容能够帮助大家切实提升数学复习的有效性,取得理想的考试成绩。
分度,从这个意义上说,题目太难和太简单都是没有意义的。 其次,数学一和数学三的区别并不明显,这和很多考生印象中可能不太一样,我们没有列出来的数学二,情况也大致是一样的。这说明了,数学一、数学二和数学三的区别主要体现在考试的范围上,考题的综合性和灵活性是没有太大区别的。 再次,我们来分析一下考研数学的总体难度,我们发现数一和数三都是以0.4~0.6这个难度区间作为中心分布的,而0.4~0.6是中等难度的试题,所以考研数学总体来说是以中等难度为主的。更具体地来说,常考的难度区间中,0.4~0.6以及0.6~0.8这两个区间段内的考分加起来至少会占到110分,这类题目就是我们所谓的基础题。 所以,考研数学的试题绝对是以基础题为主的,这意味着只要我们能够踏踏实实打好基础,把这110分的基础分尽可能多地拿下,我们冲击高分就有了可能性。在我们全年的复习中,我们主要的任务一定怎样是保证在基础分上尽量不丢分,在此基础之上,适量地做一些综合性较强的题目,以此作为复习的总方向,则高分可望。 看了上面的分析,相信大家对于数学一应该不是那么害数学也会分为数学一,二,三。很多人认为最难的就是数学一了,认为自己考的专业如果是数学怕了。其实难和简单取决于我们复习的程度如何,我们如果复习的差不多的话,考数学几都是没问题的。
遇到求角度的问题,一般要将角放在一个直角三角形里,求出其三角函数值,再求角度即可。 7、遇到有关几何的计算题,要从以下几方面切入: (1)勾股定理(2)。相似三角形(3)。三角函数(4)。弧长、扇形(5)面积 关键技巧 a、在所给已知的图形中找出基本图形 b、如果找不出基本图形,添加辅助线构造出基本图形。 c、见比设k d、设一个或两个未知数,其余的线段全部用所设的未知数表示出来,然后列出方程或方程组解之即可。 8、遇到函数和几何相结合的题,将坐标轴看成是二垂直的直线,用几何的知识―以形解数‖解决此题;或将几何问题化为代数问题来处理,即―以数解形‖;在坐表系中处理距离问题要注意绝对值添或减及分类讨论思想的应用。 9、遇到探究题,要先假设结论成立;然后探究推理;最后得出结论。又是一个三部曲。 10、遇到方案设计型题,要注意结论的多样性,尽可能根据题意,将所学生来说,如何通过有效的复习来提升自己应对考试的能力不仅关系到备考的有效性,同时也关系到考试成绩的高低。那么在数学有的方案列出来 11、遇到策略开放型题,要注意解题方法的不唯一,一题多解,发散思维。 上述是沪江小编为大家分享的关于如何复习好中考数学的相关建议,希望这些技巧能够帮助广大考生提升数学复习的效果,取得理想的考试成绩。