重要的。 9.阅读理解问题 如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题初中阶段的学生来说,在平时的学习中注意对中考常考题型的针对性练习可以有效提升大家解答数学题目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。 上述是沪江小编为大家提供的关于中考数学常考的9种题型的内容,希望对大家平时的学习和中考复习能够有所帮助,提升大家中考备考的效果。
涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。 5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。 6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。 上述是沪江小编为初三同学们所题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。下面沪江小编介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。 5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。 6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。 上述是沪江小编为初三同学们所提供的如何解答中考数学压轴题的相关方法,希望这些内容能够帮助大家提升对压轴题解题的理解,在考试中顺利攻克这一难关。
常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。 二、特殊化法 当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特 殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。 三、数形结数学填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题。这说明了填空题是数学合法 “数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过 形的形象、直观揭示
缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。 三复习 体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。 四作业 认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更初中阶段的数学学习来说,学生的学习要注意科学方法的应用。今天,沪江小编就结合以往的辅导经验,为大家分享一些效果比较好的学习方法和步骤,供同学们参考学习。 一预习 对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。 二听讲 这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。 三复习 体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。 四作业 认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。 五总结 这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。 上述就是沪江小编为同学们分享的关于初中数学学习的五个步骤的相关内容,希望同学们能够将这些方法充分应用到自己日常的学习中,提升数学学习的效果。
如果说小学数学是数学的入门级学习,那么初中数学就是小学数学的升级学习,初中数学在小学数学的基础上稍等难度,无论是在概念的理解上还是在抽象思维的培养上,初中数学都要相对于难掌握一些,为了给高中...
内容就很容易被理解,学生也很快的适应此题目,同时,也就避免了抵触心理的产生. 此外,数学应用题本身就具有说明文的性质,字数较多,信息量也比较大,这就需要学生在作答时要多多的审题,在审题中了解这题目的大致意思,抓主干,以便解答题目. 三、归纳数学应用题类型的分类 初中数学应用题不仅是对学生数学解答技巧的考核,更重要的是对学生分析和理解文字内涵的考核. 数学题中的文字就是解题的关键,但总的来说,数学应用题的类型无非就是那几类,比如,行程问题(匀速运动)、相遇问题(同时出发)、追及问题(同时出发)、水中航行、工程问题、配料问题以及增长率的问题,等等. 初中生在作答应用题时,首先要看清属于哪类问题,然后脑子里形成解答此类问题所需要的内容条件是什么,带着这样的问题进行解答,可以很快的完成这道应用题. 其次,学生还要注重自身思维习惯的培养,对应用题中所涉及的关键词要加以总结归纳,并分析理解他们之间的不同之处,像是比、倍、多、至少、之多、不是都、都是、增加到、增加了等等,诸如此类的数学关键词在题目中所表达的意思. 理解并分清了其含义对于解答应用题来说是很重要的. 另外,有的时候题数学中最常见的题目就是应用题了。当然应用题目中并没有关键词的出现,这个时候,学生就要注意应用题中所隐含的关键词了,找到隐含关键词的语句,进行分析,弄清题意,进而找到正确的解答方法. 相信大家把上面的内容仔细的学习一遍之后会发现应用题目不是那么难了,而且还有一些做题的实用技巧,对大家都是很有帮助的。
方型;B 倒数型。又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“ F”,内错角找字母“N”,同旁内角找字母“L ”。只有不断的总结,才能有创新和发展。 误区四:“对于数学公式,记住并会套用就行” 这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多初中学生的数学学习过程中,常因学习方法不当导致数学学习困难,成绩提高缓慢等情况的出现。今天沪江小编就结合以往的初中数学辅导经验为大家提供一些数学学习方法中的误区及相应的调整策略。 误区一:“一听就懂,一做就错或不会” 在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。 教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。 针对这种情况,应作出如下的策略调整,步骤如下:第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。 误区二:“数学多做题就能提高成绩,数学概念不重要” 有不少的学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。 例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现 “-a是负数”,“a>-a”,“a+b≥a” 等一系列错误。 这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易! 调整策略:第一步:记住概念,理解概念;第二步;“咬文嚼字”,抓住关键词,吃透概念;第三步:联系前后相关知识,深入理解概念;第四步:对照题目条件,联想、对比相应概念;第五步:积累经验,精选题目,注意类型,勤于总结。 误区三:“多做题目总能遇到考题” 有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。 调整策略:一让自己花点时间整理最近解题的题型与思路;二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。 如:在“无理方程”的教学中,归纳出解法:① 去分母法;② 换元法;对于换元法给予归纳出两种常见的题型:A 平方型;B 倒数型。又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“ F”,内错角找字母“N”,同旁内角找字母“L ”。只有不断的总结,才能有创新和发展。 误区四:“对于数学公式,记住并会套用就行” 这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:一是所给题目条件有限制,不能完全适用于公式;二是公式本身也有限制条件,并非适用所有题目的求解。 如:解方程:(a+1)x2-2x+5=0 。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“ a+1 ”是否为0作出讨论,分别就两种情况求解。 调整策略:一是不仅记住公式,更要记住公式的适用条件与范围;二是对照公式,仔细审题,看清哪些适用,哪些需另做讨论。 误区五:“多做难题、偏题、怪题,就能提高成绩” 学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。 调整策略:以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。 上述就是沪江小编针对初中数学学习方法应用中的误区及相应的调整策略为同学们提供的一些建议,希望大家能够将这些内容结合到日常的数学学习中,切实提升数学学习的效果。 在初中学生的数学学习过程中,常因学习方法不当导致数学学习困难,成绩提高缓慢等情况的出现。今天沪江小编就结合以往的初中数学辅导经验为大家提供一些数学学习方法中的误区及相应的调整策略。 误区一:“一听就懂,一做就错或不会” 在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。 教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。 针对这种情况,应作出如下的策略调整,步骤如下:第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。 误区二:“数学多做题就能提高成绩,数学概念不重要” 有不少的学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。 例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现 “-a是负数”,“a>-a”,“a+b≥a” 等一系列错误。 这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易! 调整策略:第一步:记住概念,理解概念;第二步;“咬文嚼字”,抓住关键词,吃透概念;第三步:联系前后相关知识,深入理解概念;第四步:对照题目条件,联想、对比相应概念;第五步:积累经验,精选题目,注意类型,勤于总结。 误区三:“多做题目总能遇到考题” 有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。 调整策略:一让自己花点时间整理最近解题的题型与思路;二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。 如:在“无理方程”的教学中,归纳出解法:① 去分母法;② 换元法;对于换元法给予归纳出两种常见的题型:A 平方型;B 倒数型。又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“ F”,内错角找字母“N”,同旁内角找字母“L ”。只有不断的总结,才能有创新和发展。 误区四:“对于数学公式,记住并会套用就行” 这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:一是所给题目条件有限制,不能完全适用于公式;二是公式本身也有限制条件,并非适用所有题目的求解。 如:解方程:(a+1)x2-2x+5=0 。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程
可以理解为斜率公式或者是定比分点公式?再如,看到这类式子,你是否意识到它可能用上均值不等式。解析几何中,有些线段本身就是焦点弦或者是焦半径;立体几何中,有些图形是经典的三垂线结构或者三余弦结构,有些图形本身就是从正方体中切下来的一部分;等等。意识到这一点,往往就容易找到破题的口子。 14.易处优先的策略 解决任何问题,都不免会碰到困难,人们的一个策略就是先易后难,逐步解决。体现在对待数学问题的态度上,当然也是如此。数学解初中数学题答题,常常是一设多问,难度逐渐加大,解答时候就应该遵循这个顺序。 上述就是沪江小编与大家分享的关于数学解题时的14个优先策略的内容,希望大家能够将这些策略充分应用到自己的学习中,提升数学解题的效果。
求角度, 先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名, 简单三角的方程,化为最简求解集 学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合。所以同学们要想提高数学学习效率,平时一定要多做练习,丰富自己的解题经验,这样有利于应对考试。以上是小编整理定理知识点,希望可以帮助到大家。