成对典型习题进行题后总结反思的习惯对提高解题能力触发解题潜能是极为有利的。例如: 自己是否很好地理解透题意,找到条件与问之间的联系? 能否迅速发现题目中关键的解题题眼? 能否变换添置题目中条件、问题、结论? 这道题所用的方法技巧有哪些特殊之处? 能否推广这道题的解题方法技巧? 自己能从这道题中收获哪些新知识新方法? 还有哪些与此相关联相类似的题目呢? 这道题的背景设置技巧、构思方法编排、分析流程等有无代表性? 认真反思总结一道有代表性习题所得丰厚收获,岂是泛泛做几十道习题所能与之相比!前者在考场上数学答卷题感丰厚左右逢源一触即发,后者数学应考题感数学作为小升初考试中的重要科目之一,是对学生数学学习知识和能力的重点考察。而小升初数学的复习除了要掌握相应的知识以外,还要知道如何学思路枯竭无源搜肠刮肚望题兴叹。 上述就是沪江小编为广大小学生提供的关于小升初上学不复习的一些建议,希望这些内容能够帮助大家切实提升数学复习的有效性,取得理想的考试成绩。
数字河)》 有一天,小虎和小莉姐弟俩一起出去玩。他们俩走着走着,忽然面前出现了一条河,河上没有桥,小虎想游过去,可当小虎跑到河边一看吓的大叫起来:“小莉,河里有鳄鱼!” 细心的小莉发现河中有许多露出水面的石头,只是有个怪现象,那就是每块石头上都有数字。 小虎不管三七二十一,走在前面,一边走还一边报数:“1、2、3、5、8。” 突然小虎停了下来说:“8的前面有好几块石头,该走哪一块呢?” 小莉提醒道:“小虎当心,不能乱走,我发现这些数字好像有规律!” 于是他俩停下来进行研究:1、2、3、5、8、(?)、(?)……,小莉:“8后面应该是几?” 小莉思考了一会儿兴奋的说:“我知道了!你看每个数字都是它前面两个数字的和,所以8后面应该是5+8=13。” 小虎接过话说道:“太简单了!13后面应该是21、21后面应该是34……”这样他俩成功的渡过了数字河! 阅读启发:大自然中的数学无处不在,只要我们善于观察、多动脑筋、认真思考,就能发现数学真得很奇妙! 上学的孩子的学习很头疼,主要是因为孩子们还小,不知道学习是怎么一回事。特别是数学的学面的这两篇小故事都很不错,可以帮助我们的孩子们简单的学习数学。我们的家长们可以经常来沪江网浏览这些小故事,然后记下来讲给我们的孩子们。
用它来解决问题。 二、多看一些例题。 细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已数学是一门基础学科,是我们学习的主要科目之一,也是理科之首。要想学好数学,首先要端正自己的学有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看。 3、多做练习。 要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等。 通过学习数学,可以发现数学的知识和我们的生活息息相关。要想提高数学的学习效率,那就要把书本上的概念,定理和公式理解记忆。平时除了课后的习题以外,自己也要多增加一些课外练习,通过做题来巩固学过的知识,丰富自己的做题经验,有利于应对考试。
数学是一门研究机构和数量,空间等概念的学科,数学成绩好的同学通常会对数
数学取得好成绩,就要掌握正确的学习方法,学习方法就像是开启数学大门的一把钥匙,一旦找到,数学会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。 这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。 其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄得一团糟。 我们的建议是:“总结归纳”是将题目越做越少的最好办法。 以上就是沪江小编跟大家分享的学习好初中数学的六种方法和五种提分秘籍,希望大家能够充分应用这些方法,提升自己数学学习能力,取得理想的学习成绩。
初中的数学难度逐渐提升,很多同学都是从这时候在数学上落数学难度逐渐提升,很多同学都是从这时候在数学上落到来后面。所以想要学好初中的数学,基础知识与举一反三的能力一定要培养。初中的数学公式是学习数学知识的基础,所以要牢记这些数学公式,做题的时候灵活运用进去。 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r>0 扇形公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 运用好这些数学公式,在我们平时做题是才能更好的代入。如果记不住数学公式,那么谈何解题。初中阶段的数学要有意识的培养自己的逻辑分析能力与思考能力,在熟记数学公式的基础上获得知识。
是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。 (3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免 错误的发生。 二、强化口算能力 任何计算都数学的一个核心内容,几乎每一个数学是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。 三、速算巧算 平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。 四、强化估算能力 很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。 五、合理利用一些数的性质 比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。 上述就是沪江小编为大家提供的关于提升初中数学计算能力的相关技巧,希望对同学们数学计算能力的提升能够有所帮助。
分度,从这个意义上说,题目太难和太简单都是没有意义的。 其次,数学一和数学三的区别并不明显,这和很多考生印象中可能不太一样,我们没有列出来的数学二,情况也大致是一样的。这说明了,数学一、数学二和数学三的区别主要体现在考试的范围上,考题的综合性和灵活性是没有太大区别的。 再次,我们来分析一下考研数学的总体难度,我们发现数一和数三都是以0.4~0.6这个难度区间作为中心分布的,而0.4~0.6是中等难度的试题,所以考研数学总体来说是以中等难度为主的。更具体地来说,常考的难度区间中,0.4~0.6以及0.6~0.8这两个区间段内的考分加起来至少会占到110分,这类题目就是我们所谓的基础题。 所以,考研数学的试题绝对是以基础题为主的,这意味着只要我们能够踏踏实实打好基础,把这110分的基础分尽可能多地拿下,我们冲击高分就有了可能性。在我们全年的复习中,我们主要的任务一定怎样是保证在基础分上尽量不丢分,在此基础之上,适量地做一些综合性较强的题目,以此作为复习的总方向,则高分可望。 看了上面的分析,相信大家对于数学一应该不是那么害数学也会分为数学一,二,三。很多人认为最难的就是数学一了,认为自己考的专业如果是数学怕了。其实难和简单取决于我们复习的程度如何,我们如果复习的差不多的话,考数学几都是没问题的。
整地做,每一本好的参考书都存在着一个知识体系,有些同学这数学对于绝大部分文科生来说是个巨大的难题,有些学生头疼不已,烦躁不堪,甚至觉得是“噩梦”。很多时候,学本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度。 尝试一段时间上面的方法看看有没有效果,大部分学生的数学成绩应该都有提升,但是凡事都不是绝对的,再好的方法对于不同的人产生的结果是不同的。沪江网校的高中数学课程,专业团队打造,雄厚的师资力量,帮助大家攻坚克难。
能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 六、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 无论遇到什么难题,小编都相信大家可以心平气和地数学难题,相比各位学面对各种难题,从中慢慢得出解题思路,当然,这也是需要到家平时多加练习,熟练掌握一些难题的解题思路和技巧。祝大家学习进步,备考顺利!