走了多少吨? 7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨? 8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米? 9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克? 10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵? 11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人? 12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车数学,数学应用题对于孩子来说应该是难度最大的,那怎么样才能学好数学行了全程的 3/4,乙车行了全程
了解一些,作比较深入的研究,那么可以查阅几本书,看一看其他书上对这个问题是怎样论述的,自己可以做一个小结,这也是培养自己自学能力的一种重要方式。 好的辅导书可以帮助我们学好大学数学,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高自己解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。(这里,每位学生应认真阅读我们特意为学生编写的数学教学辅导书。辅导书指数学学科的特点是高度的抽象性与严密的逻辑推理,因此大学生普遍反映大学数学是一门较难学出了各章节要点,对内容作了小结,并附了大量典型题。完成这本书上的课外自测题,对理解和掌握大学数学各章重点内容有非常好的效果。) 同学们!大学数学并不可怕,怕的是你自己没有信心和勇气去学好它。其实,每一门学科都有其固有的规律和结构,以及与这些规律和结构相适应的思想方法,掌握好的学习方法,加上自己刻苦努力,就一定能在大学数学的知识海洋中自由翱翔。
数学,对于一些小学生来说,可能是比较难的学科。其实,只要同学们掌握好的方法,就会发现数学学已为广大的教育工作者所重视,并且提出了不少好的学习方法。但是由于长期来“以教代学”的影响,大部分学生对自己的学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适合自己的有效的学习方法。因此,作为一个自觉的学生就必须在学习知识的同时,掌握科学的学习方法。希望上述沪江小编为大家提供的数学学习方法能够切实发挥促进作用,提升大家数学学习的效果。
变量、多层次的比较复杂的系统,对原型进行一定的简化即抓住主要矛盾,数学模型应比原型简化,数学模型自身也应是“最简单”的。 2、可推导原则 由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。 3、反映性原则 数学模型实际上是人对现实世界的一种反映形式,因此数学模型和现实世界的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键性技巧。 四、 数学模型的作用 1、解决对客观现象进行试验的困难。 2、比较容易操作。 3、模型试验能够比较节约。 4、可以揭示客观对象本质。 五、 数学模型的构建步骤 1、提出问题并用准确的语言加以表述。 2、分析各种因素,作出理论假设。 3、建立数学模型。 4、按数学模型进行数学推导,得出有意义的数学结果。 5、对数学结论进行分析。若符合要求,可以将数学模型进行一般化和体系化按此解决问题若不符合,则进一步探讨,修改假设,重建模型,直止符合要求为止。 6、优化。对一个问题的假设和数学模型不断加以修改,进行最优化处理。因为对一个问题或一类问题也可能有几个模型,以对它们要进行比较,直到找到最优模型。 在生产活动中,某一项目涉及多种变量,每种变量相互之间存在某种关系,为了找出这种关系,从而进行最数学模型简单的说就是按照生活中食物系统之间的存在的关系,采用数学语言,概括或是近似的用数学优化设计,就必须应用数学模型知识了,故数学模型的建立和解决对于生产活动有着十分重要的意义。
想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。 四、常用公式技巧 准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。 五、强化题组训练 除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和数学或者说奥数仍是小升初中的重头戏,它在很大程度上决定着小升初成败。那么,如何在小升初数学解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 有了有效的学习方法,再进行真题及模拟训练,效果是事半功倍哦。沪江小编希望大家能够真正吸收和消化这些技巧,切实提升自己数学复习的效果,取得理想的考试成绩。
看书,做做练习册。 你可以根据教学进度制作数学练习册,预约班级优秀的同学做一些练习。互相推荐一些经典,有数学是科学发展的桥梁,数学也是人类解开愚昧走向文明的使者,数学也是血量关系的组合,那么这么重要的一门学难度好的问题,不用使用铁海战术,只需要有最具代表性的,最好的问题做。 也不能忘记粉底,有时拉高问题留不下分,重要的是在粉底上滴分。不要粗心。谨慎为上策。 考试之前,看看重点题型,基础知识点,老师讲过的卷子。 以上就是沪江小编为大家整理的正确数学学习方法,掌握正确的学习方法,对孩子的学习肯定是至关重要的,希望大家好好阅读此文,找对方法,相信这样一定会对孩子提高数学成绩有所帮助!
学生来说,如何在最后的阶段通过有效的复习来提升自己解题的能力和效果是普遍关注的内容。那么对于中考数学不要再抱着计算器; 3.对平时易算错的题型,可以验算一遍。 四、关注几个重点问题 1.新定义题型、非常规题型、存在性问题。 2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。 上述是沪江小编为大家总结的关于中考数学考前提分的策略,希望能够帮助大家切实提升自己数学考试的效果,取得理想的考试成绩。
有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点,,若存在连接到的路,则称与相互可达,也称与是连通的;在有向图中,若存数学,可能很多人还是第一次听说,那么沪江小编就给大家讲一讲它的知识。离散数学在到的路,则称到可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去
尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 四、学用结合,勤于实践 在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 五、博观约取,由博返约 课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。 六、既有模仿,又有创新 模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。 七、及时复习,增强记忆 课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。 八、总结学习经验,评价学习效果 学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。 学习方法这一问题虽学生来说,数学可能会比较难。其实,只要掌握了良好的学习方法,数学的学已为广大的教育工作者所重视,并且提出了
用了哪些基础知识、基本方法、数学思想,还存在哪些问题,错误的原因是什么,如何改正。要克服不数学复习是大家普遍关注的内容。下面沪江小编结合以往中考数学重视解题过程、不愿演算、计算马虎等不良习惯。 五、加强模拟演练。 考前模拟演练既是对复习效果的检查,又可以提升应考信心。要重视模拟过程,淡化模拟分数。应在规定的时间内独立完成试题,批发后及时查找原因。要将模拟考试中发现的问题、做错的题当成一次锻炼和自己的机会。考前发现的问题越多,纠正越及时,提高也就越快,信心就越足。 上述是沪江小编为大家分享的一些比较实用的中考数学复习策略,希望这些内容能够帮助大家提升数学科目解题的效果,取得理想的考试成绩。