就是传统的解题方法,这种解法叫直接推演法。 (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。 (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。(5)图解法:借助于符合题设条件的图形或图像的性质、特数学的解题方法是随着对数学点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。 (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。 对于初中学生来说,掌握一些常用的解题方法无疑能够很大程度上提升数学解题的效率和效果,让学生在在数学知识的学习和应用方面得到有效的提升。希望上述沪江小编所提出的解题方法能够帮助大家尽快提升数学学习的效果。
涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 4、列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 5、动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。 6、几何图形的归纳、猜想问题 中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最数学是我们学习的主要科目之一,如果数学成绩不理想,就会直接影响理科成绩。学习数学重要的。 进入初中以后,大家就会发现数学越来越难,导致成绩下降的原因就是没有理解课本的概念和公式。学习数学一定要多动脑,多思考,多做题。遇到不懂的地方要及时找老师解决问题,勤能补拙。以上就是沪江小编整理的相关知识,希望可以帮助大家。
学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。因此,我们在复习小学数学奥数目中问题得到解决。 3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。 4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。 5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。 6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。 上述的奥数数学题目解题技巧是沪江小编在平时的数学辅导过程中总结的比较有效的方法,希望能够帮助同学们提升奥数解题的效率和效果。
数学是一门研究机构和数量,空间等概念的学科,数学成绩好的同学通常会对数
题中往往起到关键作用,务必抓住、用准。比如“至多”、“至少”、“都是”、“不都是”、“增加了”、“增加到”等。另外,还要注意到题目中提供的信息,弄清其内涵和外延。三是精读。阅读数学题目重在领会,精读的关键就是把应用题的抽象内容转化为具体内容,把图像、符号转化为文字表述,或者把文字表述的关系转化为图表、符号,使大脑建立起灵活的转化机制。 随着新课程改革的深入,如何更好地培养学生运用数学知识解决实际问题的能力显得越来越重要,所以应用题的教学不容忽视。作为数学教师,应依据学科教学的特点,在思想上高度重视,在行动上精心安排,认真落实优化应用题教学,始终着眼于学生应用意识和能力的提高。教师做为引舵人,在应用题的教学中应尽可能让学生体会到自己解答应用题的能力,对自己有信心,对学习有兴趣,勇敢地、自信地淌洋在知识的海洋中。同时应用题将促进素质教育,学生素质也将数学应用题的教学要培养学生学数学的兴趣,使学生感到数学是有用的,数学离我们并不遥远;还要发展学会在应用题教学中得到显著提高。希望上述沪江小编所提供的解答数学应用题的方法能够帮助大家提升数学解题的效果和能力。
要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。 其学次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。 以上就是沪江小编为各位同学们整理的高考数学题错题本制作方法,希望同学们都能最大化利用自己的错题本提高自己的解题正确率,提升自己的综合解题能力,如需其他相关的资料,请继续关注沪江网!
没看; 5. 如果E看了,那么A和D也看了。 这个晚上哪几个人看了电视? A.AB B.DC C.ABCD D.DC或AB 第五题:同花顺 5.从52张纸牌中抽出7张同花的牌,那么最多需要抽多少张牌呢? A. 28 B. 25 C.26 D.以上答案都不对 第数学是一门很有趣也很实用的学科,教育学家也常常用数学问题来考察和选拔人才,同时数学六题:赌比赛 6. 四个代表队甲,乙,丙和丁进行比赛,观众A,B和C对比赛的胜负问题进行猜测。 A:"甲只能取得第三,丙是冠军"; B:"丙只能取得第二,乙是第三", C:"丁取得第二,甲是第一"。 比赛结束,对真正的名次,他们都只猜对了一半,请推出比赛的名次。 A. 甲取得第三,乙取得第一,丙取得第二,丁取得第四 B. 甲取得第三,乙取得第三,丙取得第二,丁取得第二 C. 甲取得第四,乙取得第三,丙取得冠军,丁取得第二 D. 以上答案都不对 答案: 1.红豆和绿豆 答案选A 解释: 从标有“红绿豆”的盒子中随便取一颗豆子,假如取出来的是一颗红豆,则“红绿豆”的盒子里面都是红豆(这一步相信大家都能想到吧),然后剩下的盒子中,标有“红豆”的盒子里面必须是绿豆(原因:如果标有“红豆”的盒子里面是红绿豆的话,那么标有“绿豆”的盒子里就只能是绿豆了,这与题意不符),而标有“绿豆”的盒子里面是红绿豆。 2.天平问题 答案选B 解释:这里以★代替所称物品的质量,用“ ▽ ”表示天平,则称量时如下图所示: ★=1 ★ ▽ 1 ★=2 ★+1 ▽ 3 ★=3 ★ ▽ 3 ★=4 ★ ▽ 1+3 ★=5 ★+1+3 ▽ 9 ★=6 ★+3 ▽ 9 ★=7 ★+3 ▽ 1+9 ★=8 ★+1 ▽ 9 ★=9 ★ ▽ 9 ★=10 ★+3 ▽ 1+9 …… ★=40 ★ ▽ 1+3+9+27 3. 农场分马 答案选C 解释: 2,3,9的最小公倍数是18,然而农场主却只有17匹马,所以三个儿子可以这样做:先从邻居家借1匹马,这样凑够18批马后,大儿子得18/2匹,即为9匹马;二儿子得18/3匹,即6匹马;三儿子得18/9匹马,即2匹马,又因为9+6+2=17,最后剩下的一匹马再还给邻居就可以了。 4.买彩电 答案选B 解释: 关键要找到逻辑分析的突破口,这里面第5句话为解题的突破口: 第一步:由5开始假设:若E看了,则A、D也看了,然后根据1可推出B看了,根据4、3课推出B没看,所以假设不成立,E没有看电视 第二步:根据2所说的内容和E没看电视的结论,可推出D一定看了,在根据4所说,C也看了。 第三步:根据3的内容,若C看了,则B一定没看,A也没有看, 答案应该选:CD 5.同花顺 答案选B 解释: 这个很简单啦,因为52张(大小鬼被抽出了)扑克牌中只有四种花色,假设我们最不幸运时,在我们抽了24张牌仍没有出现7张牌同一种花色,这时候这24张牌中每种花色必然都是6张,所以在第25张牌时,我们无论抽到那种花色,都能凑齐7张同一种花色的牌。 6.赌比赛 答案选C 解释:需进行假设论证,因为每个人只说对了一半,所以可以根据A说的话进行假设论证: 假设:甲取得第三,丙不是冠军 ∴ 在C说的话中,丁取得第二为真,甲取得第一为伪 ∴“丁为第二,甲为第三”与B说的“丙只能取得第二,乙是第三”都矛盾 ∴ 假设不成立 ∴ 甲没有取得第三,丙为冠军 以上这几道题其实是流传在网络上很久的很老的几道题了,但是拿出来依然经典!主要考验的是孩子的数学逻辑能力。其实也很有难度与挑战。