以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7.反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将数学成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 上述是沪江小编围绕中考数学题目解答为大家分享的比较实用的解题方法,希望同学们能够很好地运用这些方法,切实提升自己解题的能力和效果。
小学的数学教育很重要,因为所有数学领域最基础的东西都在这一时期进行学习。所以小学数学
接给答案。积极让孩子思考,让他顺利完成,在过程中找到克服难题的自行。 困难四:逻辑思维不清晰,数量分析不明确 数学是一门逻辑思维要求很高的学科,发散性没有语文英语那么强,答案也不具有开放性,以致于很多孩子学数学很吃力。 解决方法:利用图形来分析,审题的时候一边画图一边完成审题。把抽象的概念替代了。这样更容易理解。 困难五:数学学习与社会生活实际相脱离 数学来源于生活,数学中的计算力、观察力、分析力、推理力、判断力等与生活息息相关紧密贴合,而小学生数学学习具有较强的自我封闭性,教师普遍注重“纯粹”技能技巧的训练和题型教学,脱离社会生活实际,相对纸上谈兵、单调乏味,既让孩子丧失了学习数学的兴趣又不能在日常生活中解决各种各样的问题。即使一些数学技能掌握较好的学生,面对一些现实的数学问题也常常感到困难。 解决方法:用数学思维解决生活中问题 与日常生活相贴合,家长应引导孩子把在校学到的知识灵活运用到日常生活中,亦数学是一门开放性又具有逻辑性的科目,在学习当中很多学或是生活中的问题引导孩子用数学思维去解决。比如说生活中的爬楼梯计算,切蛋糕的角度与数量等,用这些常接触到的容易让孩子接受加深印象的具象来体现数学关系展示数学概念,告别枯燥乏味的单纯抽象概念理解,这样做在培养孩子主动学习数学的兴趣的同时还能加深孩子印象与数学思维的灵活变通。 上述是沪江小编为大家提供的关于小学数学学习中可能遇到的5大问题及相应的解决方法,希望这些内容能够帮助小学生切实提升数学学习的效果,收获更多的数学知识。
题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识数学的定义及其在各学科领域的重要作用。离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学别的符号,这样计算机才能进行推理,才能具有智能。由此可见数理逻辑中重要的思想、方法及内容贯穿到人工智能的整个学科。 在人工智能的研究与应用领域中,逻辑推理是人工智能研究中最持久的子领域之一。逻辑是所有数学推理的基础,对人工智能有实际的应用。采用谓词逻辑语言的演绎过程的形式化有助于我们更清楚地理解推理的某些子命题。逻辑规则给出数学语句的准确定义。离散数学中数学推理和布尔代数章节中的知识就为早期的人工智能研究领域打下了良好的数学基础。许多非形式的工作,包括医疗诊断和信息检索都可以和
进入高中以后,学生的学习压力就会越来越大,高中三年就是为了高考而做准备。高中的数学知识相对来说会越来越难,同学们要想提高高中数学的学习效率,一定要掌握学习的方法。除了课堂上学习的知识,还要增加大量的练习。下面是沪江小编给大家整理的关于函数的知识点和应用,大家可以相互学习一下。 1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。 2、用函数解应用题的基本步骤是: (1)阅读并且理解题意. (关键是数据、字母的实际意义); (2)设量建模; (3)求解函数模型; (4)简要回答实际问题。 常见考法: 本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。 误区提醒: 1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。 2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。 【典型例题】 例1: (1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利). (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1 000元,每期利率2.25%,试计算5期后的本利和是多少? 解: (1)利息=本金×月利率×月数. y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元. 例2: 某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。 (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)。 数学作为理科知识,是我们学习的重中之重。要想学好数学,课堂上一定要认真听课做笔记,对于重点难点要着重练习。课后的练习要学生的学习压力就会越来越大,高中三年就是为了高考而做准备。高中的数学到位,多做题才能巩固学过的知识,丰富自己的解题经验对以后的高考能起到很大帮助。以上就是小编整理的知识点,希望可以帮助大家。
初中的数学难度加深,数学公式是学生必须要学习的知识。各种数学题型都需要数学公式的套用以及解决。在初中的数学学习中各种类型的数学公式要分清楚并记牢,遇到问题时才能有方法解决。就像三角函数的诱导公式一样,不同的条件下公式是不同的。 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= —sinα cos(π+α)=—cosα tan
除掉,只剩下小狗的另两只脚,即得小狗的数量,轻而易举的习得“消元”法。 3.《伸缩道路》—如果你的孩子正苦恼于不知如何求解相遇问题,建议看此部分哦,通过移动树枝,折断树枝让相遇问题不在抽象,实现了数学“化繁为简”,“化未知为已知的思想”。 4.《鞋袜谁先》—老师和学生在溪边玩耍,脱鞋穿袜的生活实例,试着画数量关系变化图,向学生们展示逆向求解问题,即求原来的反数时,运算和顺序都要相应的反过来。 其实我本是数学爱好者,当年我也遇学数学是枯燥,单调,有时候甚至有些乏味。从来没有想过原来数学到了很好的一位数学老师,只是这样的老师不是每个人都可以刚好碰到。如今,我依旧看到身边无数的孩子在为学小学数学小学奥数而苦恼,不小心抢到这的本书,让我觉得,在无法遇到适合的数学老师的时候,卢老师的这套书《论数:孔子和弟子们的趣味数学课》也许可以让孩子们爱上数学,爱上这个美妙的数学世界。 更多小学数学思维训练分享》》》http://www.hujiang.com/c/xiaoxueaoshu/ 更多小学数学辅导资料分享 》》》http://www.hujiang.com/c/xxshuxue/
要求考生能综合利用所学知识、灵活利用所学方法,打破常规、积极探究。”庄肃钦说。 而各卷立体几何题的设计,将空间想象能力、运算求解能力与逻辑推理能力有机结合,突出对考生综合素质的考查。 淡化特殊技巧,考查通用数学方法 “从今年的全国Ⅱ卷理科试题上看,命题更加注重通性通法,淡化特殊技巧,重点考查学生的数学能力。”庄肃钦说。 例如,全国Ⅱ卷的第学习是我们学习的主要科目之一,进入高中的学习以后,数学的难度就会逐渐增加。在学习数学11、18题重点考查考生的空间想象能力,第12、21题重点考查考生的数形结合的思维能力,第4、16题则重点考查考生的应用意识和应用所学知识分析与解决实际问题的能力等。 高考命题专家分析,今年命题更多是以一道题为载体,呈现给考生一类题,通过这道题让考生掌握化归与转化的思想方法类问题的通用方法,从而达到检查能力水平的目的。 同时,命题时还充分考虑考生数学能力的个体差异。绝大多数试题的解答方法、思维方式不是唯一,而是多种多样的。“通过方法选择、解题时间长短,区分出考生能力的差异。”高考命题专家说。 对于数学成绩不太好的同学来说,最害怕的就是面对考试了。很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态。