分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数. 分数计算到最后,得数必须化成最简分数. 个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分.个位上是0或者5的数,都能被5整除,即数学好比一座高山,可哪怕是小学数学这样的小山丘,也让无数学能用5进行约分.在约分时应注意利用. 22、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数. 23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数). 24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数. 28、利息=本金
间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。 (2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。 3.解答题答题技巧 (1)仔细审题。注意题数学考试中的常见题型,也是学目中的关键词,准确理解考题要求。 (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。 (3)给出结论。注意分类讨论的问题,最后要归纳结论。 (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。 上述是沪江小编为大家总结的关于数学考试中常见题型的解题技巧,希望这些能够帮助大家提升数学考试解题的能力和效果,希望能够帮助大家提升数学学习的能力和效果。
对于参加中考的考生来说,如何通过有效的方法来提升数学考试的成绩是大家普遍关注的问题。下面沪江小编就为大家提供几条考试的建议,以便使同学们临场不慌,并能在紧张的考试中超水平发挥。 一、提前进入“角色” 考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动,进入单一的数学情境。 1.清点一下用具是否带全(笔、橡皮、作图工具、身分证、准考证等)。 2.把一些基本数据、常用公式、重要定理“过过电影”。 3.最后看一眼难记易忘的结论。 4.互问互答一些不太复杂的问题。 一些经验表明,“过电影”的成功顺利,互问互答的愉快轻松,不仅能够转移考前的恐惧,而且有利于把最佳竞技状态带进考场。 二、迅速摸透“题情” 刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事。 1.顺利解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪立即稳定)。 2.对不能立即作答的题目,可一面通览,一面粗略分为A、B两类:A类指题型比较熟悉、估计上手比较容易的题目,B类是题型比较陌生、自我感觉比较困难的题目。 3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。 最后,沪江小编需要说的是:通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。希望上述所提供的学习建议能够切实提升大家数学备考的效果,取得理想的考试成绩。
面的平均高度是多少厘米? 2、小明期末测试语文、数学、英语和科学分别是90分、96分、92分和98分。小明这四门功课的平均成绩是多少分? 3、甲筐有梨32千克,乙筐有梨38千克,丙、丁两筐共有梨50千克,平均每筐梨有多少千克? 4、幼儿园小朋友做红花,小明做了7朵,小红做了9朵,小花和小张合数学是学习学习科目中最重要的科目之一,从小学到高中,都应该特别重视。小学所学的数学内容相对来说比较简单。作为学作了12朵。平均每人做红花多少朵? 5、一个书架上第一层放书32本,第二层放书和第三层共46本。平均每层放书多少本? 6、某工厂第一、第二车间共有工人180人,第三车间有103人,第四车间有81人。平均每个车间有多少人? 7、商店有蓝气球和红气球共43只,黄气球有20只,绿气球有33只。平均每种气球有多少只? 8、植树小组植一批树,3天完成。前2天共植了113棵,第三天植了55棵。植树小组平均每天植树多少棵? 9、小明期中考试,语文、数学总分是197分,英语考了91分,小明三门功课的平均成绩是多少分? 3、小红、小青的平均身高是103厘米,小军的身高是115厘米,三个人的平均身高是多少厘米? 4、一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页? 学好数学一定要养成一种长期思考的习惯,学用结合,勤于实践。课堂上一定要认真听课,做好相关笔迹,老师讲解的重点难点做好记录,课后重点复习。平时一定要多做题,养成做题的习惯才能巩固已学过的知识,总结学习经验也很重要,可以促使提高学习效率。
解了就能把问题解决掉,至少有个思考的方向,要用某一个定理。 对某一种数学思想的学习训练、有意识的总结体会,过一段时间后你会感觉这样解题是很自然的事,如果几何图形中,求长度、角度、面积等问题,设未知数,建立等量关系,是自然的过程了,其实,这正说明你对方程思想解题已领悟了,上了一个新的台阶,但不能保证,你想到了方程,就一定能把问题解决,完全把问题解决还是要用其它相关的具体知识。 总之,对待没学们普遍感到困惑的无疑是最后两题:函数中的图形、图形中的函数、分类讨论等数学见过的题,需要用数学的思维和创新的方法。一味地靠做题,不认真进行反思提炼它的数学思想和方法,不一定能解决问题。同学们在复习解答数学综合题时只要做到:“数形结合记心上,大题小题试转化,隐含条件可别忘,分类讨论须严密,方程函数是工具,计算推理要严谨,解题格式应规范。”保证不出失误不丢分。希望上述沪江小编为大家分享的关于数学思想方法训练的内容能够很好地帮助同学们提升数学复习的效果。
把数改写成以“万”作单位,还是以“亿”作单位的数;二找——找到“万”位或“亿”位;三点——点上小数点,点在万位或亿位的右下方;四去——去掉小数末尾的零;五写——写上单位“万”或“亿”。因此,975432000可以写成9.75432亿。 上述是沪江小编与大家分享的数学辅导方法,这五步也是解决这类问题的一般方法,一旦孩子掌握了解决问题的方法,并通过适度的练习,就能较好地解决这一类问题,促使孩子举一反三,实现理想的学习效果。
目的切入点。下面我们就一起来看看吧。 切入点一:构造定理所需的图形或基本图形 在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。 切入点二:做不出、找相似,有相似、用相似 压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。 切入点三:紧扣不变量,并善于使用前题所采用的方法或结论 在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。 切入点四:在题目中寻找多解的信息 图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。 总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。希望上述沪江小编所提的建议能够切实帮助大家提升数学考试的能力和效果,取得理想的考试成绩。
三是心态问题。 往往好多同学花在数学上的时间很多,但是却有种压迫、烦躁、被逼的感觉。如果是这样,就学不到什么了。调数学作为小学阶段学生学习中的重点科目,对于学生基础数学整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把自己打倒,要有自己不垮,谁也不能打垮自己的自豪感。做数学题要有霸气,要自信,不可畏畏缩缩。 上述是沪江小编围绕小学生如何学好数学知识这一内容的方法指导,希望这些技巧能够切实帮助大家提升数学学习的效果,奠定以后数学及其他学科知识的学习与提升的基础。
目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够通过分析题目,想到用哪一种思维方法来解决问题,或者通过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要数学对于很多人来说是个头疼的科目,有的人是怎么也学不明白。这不仅有学生的主观责任,教师的教学方法与理念也有很大不断地进行教学总结,要掌握班上学生的数学基础情况,培养学生集中思维的同时要重视发散思维能力的培养,加强自身的业务能力,根据学生的反馈信息改进教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改进,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大意义。 这篇文章是对数学教学的反思与总结,这是教育工作者日常的工作之一。不要觉得麻烦,总结反思之后才能创造更好的教学方法以及教学理念。通过每一次的反思找到问题所在。
数学常常是很多人高考过程中丢分的重灾区,对于高考而言,每一分都是相当重要。为了大家能够尽早对高考数学有一个大致的了解,我给大家介绍介绍高考数学试题中的几何部分,供大家参考学习。 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容。因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那 么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。解数学常常是很多人高考过程中丢分的重灾区,对于高考而言,每一分都是相当重要。为了大家能够尽早对高考数学答题分步骤解决可多得分。 以上就是我们在高考数学中常常常常需要用到的几何部分知识,希望大家能够认真对以上内容进行分析掌握,争取在高考数学试题中的几何部分能够尽可能的不丢分,从而对我们的总成绩能够有所提升。希望本文对大家的数学学习能够有所帮助。