要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题 把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难 做的题也有可得分之处。所以考试中考有限的时间内充分发挥自己的水平,对每个考生来说是很重要的一件事,它对你数学看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 上述是沪江小编为大家分享的关于快速解答数学题的技巧,希望这四大方法能够帮助同学们切实提升数学解题的效果,取得理想的考试成绩。
本题时,我们要仔细读题,回到概念的定义中去,对症下药。 方法二:对称检验 对称的条件势必导致结论的对称,利用这种对称原理可以对答案进行快速检验。 方法三:不变量检验 某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。利用这种变化过程中的不变量,可以直接验证某些答案的正确性。 方法四:特殊情形检验 问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例来检验答案是非常快捷的方法。 方法五:答案逆推法 相信这种方法很多学生都会,在求出题目的答案后,可将答案重新代回题目中,检验题学生来说,数学考试是同学们经常面对的一项内容。而在进行考试过程中,学目的条件是否还成立。但是这种方法一定要注意,要想想有没有可能存在多解的情形。 总而言之,要想提高检查的次数与效率,又想避免枯燥的重复,就需要一题多解去检验。 一道题,使用原来的方法去做,固然也能发现错误,但是人都是有惯性思维的,很容易就忽视了一些小的错误。 如果在检查时,我们都尽量去想一些新的方法,那样,一来可以检查答案的对错,二来可以减少机械性重复产生的枯燥感,三来思考新的解法也是锻炼思维的一种手段,四来能将试卷中的题的作用发挥到最大,可以说是一举多得的好措施。 此外,直接检查作为最基础的方法,要重视技巧直接检验法就是围绕原来的解题方法,针对求解的过程及相关结论进行核对、查校、验算。为配合检查,首先应正确使用草稿纸。沪江小编建议大家将草稿纸叠出格痕,按顺序演算,并标上题号,方便检查对照。其次,一定要细心细心再细心,每一个细节都需要仔细推敲,而不能“想当然”,记住“最安全的地方有时候也是最危险的地方”。
就是传统的解题方法,这种解法叫直接推演法。 (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。 (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。(5)图解法:借助于符合题设条件的图形或图像的性质、特数学的解题方法是随着对数学点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。 (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。 对于初中学生来说,掌握一些常用的解题方法无疑能够很大程度上提升数学解题的效率和效果,让学生在在数学知识的学习和应用方面得到有效的提升。希望上述沪江小编所提出的解题方法能够帮助大家尽快提升数学学习的效果。
重要的。 9.阅读理解问题 如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题学生来说,在平时的学习中注意对中考常考题型的针对性练习可以有效提升大家解答数学目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。 上述是沪江小编为大家提供的关于中考数学常考的9种题型的内容,希望对大家平时的学习和中考复习能够有所帮助,提升大家中考备考的效果。
数学学习肯定绕不过数学符号,数学符号是国际通用的,在考试中,大家需要一看数学符号就要知道代表的意义,这样才能顺利的继续考试。在平时的做题当中数学符号也多有体现,那么常用的数学符号,你知道它的意义吗?沪江小编现在就和大家一起学习一下。 ∞ 无穷大 π 圆周率 |x| 绝对值 ∪ 并集 ∩ 交集 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 x - floor(x) 小数部分 ∫f(x)dx 不定积分 ∫[a:b]f(x)dx a到b的定积分 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作ex logba 以b为底a的对数 cos x 在自变量x处余弦函数的值 tan x 其值等于 sin x/cos x cot x 余切函数的值或 cos x/sin x sec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x asin x y 正弦函数反函数在x处的值,即 x = sin y acos x y 余弦函数反函数在x处的值,即 x = cos y atan x y 正切函数反函数在x处的值,即 x = tan y acot x y 余切函数反函数在x处的值,即 x = cot y asec x y 正割函数反函数在x处的值,即 x = sec y acsc x y 余割函数反函数在x处的值,即 x = csc y 数学领域的数学符号还有很多很多,上数学学习肯定绕不过数学符号,数学符号是国际通用的,在考试中,大家需要一看数学面的内容只是在平时学习中常见的部分。熟练的掌握数学符号,并且还有明白它所代表的含义。数学虽然很让人头疼,但是数学符号还是要记牢。
目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。 c检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。 d答案:根据计算的结果,先口答,逐步过学习数学的兴趣,那么对孩子以后学习数学是有非常大的帮助的。下面沪江小编就给大家介绍七种数学渡到笔答。 (5)常见的数量关系: -总价=单价×数量 -路程=速度×时间 -工作总量=工作时间×工效 -总产量=单产量×数量 (6)解答乘法应用题: a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。 b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。 (7)解答除法应用题: a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。 b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。 c求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。 d已知一个数的几倍是多少,求这个数的应用题。 上述就是沪江小编与大家分享的关于小学数学常用的七种解题方法,希望大家能够深入掌握这些内容,提升自己数学的解题能力和效果,取得理想的学习成绩。
理解一个概念. 其次,掌握定理.定理是一个正确的命题,分为条件和结论两部分.对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢. 第三,在弄懂例题的基础上作适量的习题.要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题.作题时要善于总结---- 不仅总结方法,也要总结错误.这样,作完之后才会有所收获,才能举一反三. 第四,理清脉络.要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助. 高等数学中包括微积分和立体解析几何,级数和常微分方程.其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念的理解有很大难度. 希望我们同学们在学习高等数学之前把上学之后,如果我们报的是理工科的院校,一定会学习的一门科目就是高等数学了。对于高等数学面的内容都仔细的看一遍,然后按照上面去学习,那么接下来的高等数学的学习就不难了。
加工,但又体现教材为本的原则,是近年来中考数学卷的创新之举。教材上所选择的例题、习题都非常具有代表性,所以,老师教学时有必要对教材中的重要例题、习题进行变式、引申、拓展和总结,不搞题海战术,重视对习题的分类、归纳和反思,达到“做一题,得一法,会一类”的效果。 3、动态综合题和存在性问题是中考复习的重要内容,这类题型不容易预测,只能在平时的作业中多加训练,培养学生的数学建模能力。 4、第一轮复习应以教材的编排体系为主线,全面系统复习,不留死角,梳理归纳教材的内容,构建知识体系,使书本知识由“厚”变“薄”,做到有的放矢。第二轮复习重点是知识块,把初中阶段所考的学生来说,如何复习好初中阶段的数学知识是自己关注的重点内容。那么在中考数学有的知识点分成若干个专题,有目的、有计划、有步骤地复习,从知识、技能、方法等多方面加以展开,纵向深入。第三轮复习的任务有三个:一是综合题的练习,二是模拟训练,三是回归教材。 上述是沪江小编为初三同学所提供的关于中考数学复习需要注意的几个问题的内容,希望这些能够帮助同学们更好地掌握中考数学复习的关键点,取得理想的成绩。