都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可考的学生来说,掌握相应的数学解题技巧无疑能够帮助大家在较短的时间内提升数学以使代数、三角、几何等种数学知识互相渗透,有利于问题的解决。 上述中考数学的解题技巧是沪江小编为大家提供的比较实用的内容,希望同学们在接下来的复习过程中能够很好地将这些方法运用到自己的学习之中,切实提升自己学习的效果。
学们可能知道,在每次大大小小的测试中,很多时候并不是感受到了数学重要的环节是审题。高考数学审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。 3、熟悉课本,注意积累 在解高考数学题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。这是学霸分享的如何提高数学解题速度技巧之三。 4、合理分配数学答题时间 学霸分享的如何提高数学解题速度技巧之四是合理分配高考数学考试时间。最主要的问题是速度,原则是“稳中求快,准确第一”,没有准确性的快更不可取。高考数学考试尽量从前往后做,但要合理分配时间基础题固然重要,但后面的大题分值也不小,所以要注意答题时间。 以上就是沪江小编为大家整理的如何提高高考数学解题速度的方法,速度快是很重要,但是,小编还是希望大家在考试的时候慎重解题,不要一味追求速度,在平时的解题过程中,多练题,适当提升自己的解题速度,才能提升综合的实力!
数学是我们学习的主要科目之一,也是理科之首,数学成绩的好坏直接影响整体理科成绩,所以学好数学至关重要。通过学习数学,我们可以发现,数学的知识和我们的生活息息相关。下面,沪江小编给大家分享两道初三常考的数学压轴题,大家可以作为学习的参考。 题一: 小明离家2.4千米的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45分钟,于是他立即步行(匀速)回家取票,在家取票用时2分钟,取到票后,他马上骑自行车(匀速)赶往体育馆。已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20分钟,骑自行车的速度是步行速度的3倍。 (1)小明步行的速度(单位:米/分钟)是多少
也是跳步解答。 “以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。 如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。 一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题考考生来说,掌握一些数学得分的捷径往往能够保证大家在最短的时间内将可以拿到的分数目中的条件翻译成数学表达式,设应用题的未知数等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真―学习认真―成绩优良―给分偏高。有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。 上述是沪江小编为大家提供的关于中考数学得分的几个捷径,希望这些方法能够帮助同学们切实提升数学解题的效果,取得理想的考试成绩。
理解一个概念. 其次,掌握定理.定理是一个正确的命题,分为条件和结论两部分.对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢. 第三,在弄懂例题的基础上作适量的习题.要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题.作题时要善于总结---- 不仅总结方法,也要总结错误.这样,作完之后才会有所收获,才能举一反三. 第四,理清脉络.要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助. 高等数学中包括微积分和立体解析几何,级数和常微分方程.其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念的理解有很大难度. 希望我们同学们在学习高等数学之前把上学之后,如果我们报的是理工科的院校,一定会学习的一门科目就是高等数学了。对于高等数学面的内容都仔细的看一遍,然后按照上面去学习,那么接下来的高等数学的学习就不难了。
理了一些高等数学的学习经验,希望能帮到大家! 一、课前预习 跟高中时代一样,做好课前预习很重要。大学里的讲师们可能讲课的速度比较快,此时预习就显得格外重要。 二、认真听课,做好笔记 老调重弹,上课一定要认真听课,不要贪玩,贪睡。同时,该做笔记的,一定要记一下。 三、课后复习 前面说了,讲师们讲得可能比较快,此时,下课后就要自觉去复习了。遇到不懂的,可以跟同学讨论一下。如果实在有些难理解的,可以上网找找资料,还可以再去其他班级蹭蹭课,多听一遍,总该会了。 四、多做题 考试想要高数得高分一定离不开题海战术,做题,多多益善。如果没耐力也一定要将课后题和章节测试AB好好练习。 五、举一反三 学高等数学,一定不能太死板。要学会举一反三,同样的考核目的,可以有不同的考核形式。在学习的过程中,一定要多学的新生们来说,很多同学的专业基础课都有高等数学,由于难度,教学方式等不同,很多同学会跟不上,别担心,小编这就给大家用心,多去思考。 六、用心是关键 工科生和理科生其实学高等数学并不复杂,就跟学其他理工科目一样,关键是要用心。大学里不应该太放纵自己,而是要学会更多的技能。 高等数学的确有一定难度,但也不是没办法改变,小编相信大家一定能够做到,祝各位同学学习进步!
异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只数学是我们学习的主要科目之一,数学成绩不理想,就会影响整体的理科成绩。所以,学好数学至关重要。学习数学要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则A B(或A B); 2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 ) 3)交集:A∩B={x| x∈A且x∈B} 4)并集:A∪B={x| x∈A或x∈B} 5)补集:CUA={x| x A但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。 4.有关子集的几个等价关系 ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB; ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。 5.交、并集运算的性质 ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A; ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 高中的学习是学生压力最大的时期,因为要为高考而做准备。学习数学要做好课前的预习,上课认真听课做笔记,课后的练习一定要到位。遇到不懂的地方要及时找老师一起解决,直至把问题弄懂,弄明白。以上就是小编整理的高中数学知识点,希望可以帮助大家。
为主 统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题考的学生来说,如何在复习的时候抓住要点是大家普遍关注的问题?沪江小编认为,数学复习应该重点抓好数为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。 对于几何与三角形这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。 另外,四边形的考察题型较多,选择、填空、证明推理、探求规律及图形设计等有可能出现,和四边形有关的开放性问题、探究问题、两个图形在平移及旋转过程中的面积重叠问题及结合函数求最值问题等将会成为今后命题方向。 和圆有关的论证题将不再出现 有关圆的推理论证题将不会再出现
用了黄金分割点,才让人感到赏心悦目。 二、人体的应用 1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。 2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点…… 三、建筑物的应用 古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔…… 四、生活上的应用 1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最数学学习时想要深入了解数学问题,学生可以尝试着编写数学小论文,这对于培养数学兴趣,提升数学快速的找到损坏处。 2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。 大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美! 数学的奥秘有很多,等待着大家去挖掘。想要写数学小论文也别犯愁,可以从小事着手。字数少也没关系,积少成多,多尝试去写,总能写出感觉和经验来的。